200 research outputs found

    Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera

    Get PDF
    Vertebrate studies show neuroligins and neurexins are binding partners in a trans-synaptic cell adhesion complex, implicated in human autism and mental retardation disorders. Here we report a genetic analysis of homologous proteins in the honey bee. As in humans, the honeybee has five large (31–246 kb, up to 12 exons each) neuroligin genes, three of which are tightly clustered. RNA analysis of the neuroligin-3 gene reveals five alternatively spliced transcripts, generated through alternative use of exons encoding the cholinesterase-like domain. Whereas vertebrates have three neurexins the bee has just one gene named neurexin I (400 kb, 28 exons). However alternative isoforms of bee neurexin I are generated by differential use of 12 splice sites, mostly located in regions encoding LNS subdomains. Some of the splice variants of bee neurexin I resemble the vertebrate α- and β-neurexins, albeit in vertebrates these forms are generated by alternative promoters. Novel splicing variations in the 3′ region generate transcripts encoding alternative trans-membrane and PDZ domains. Another 3′ splicing variation predicts soluble neurexin I isoforms. Neurexin I and neuroligin expression was found in brain tissue, with expression present throughout development, and in most cases significantly up-regulated in adults. Transcripts of neurexin I and one neuroligin tested were abundant in mushroom bodies, a higher order processing centre in the bee brain. We show neuroligins and neurexins comprise a highly conserved molecular system with likely similar functional roles in insects as vertebrates, and with scope in the honeybee to generate substantial functional diversity through alternative splicing. Our study provides important prerequisite data for using the bee as a model for vertebrate synaptic development

    Separating two tightly linked species-defining phenotypes in Bactrocera with hybrid recombinant analysis

    Get PDF
    Background: Bactrocera tryoni and Bactrocera neohumeralis mate asynchronously; the former mates exclusively around dusk while the latter mates during the day. The two species also differ in the colour of the post-pronotal lobe (callus), which is predominantly yellow in B. tryoni and brown in B. neohumeralis. We have examined the genetic relationship between the two characters in hybrids, backcrosses and multigeneration hybrid progeny. Results: Our analysis of the mating time of the parental species revealed that while B. tryoni mate exclusively at dusk, B. neohumeralis females pair with B. neohumeralis males during the day and with B. tryoni males at dusk. We found considerable variance in mating time and callus colour among hybrid backcross individuals of both sexes but there was a strong although not invariant trend for callus colour to co-segregate with mating time in both sexes. To genetically separate these two phenotypes we allowed the interspecific F1 hybrids to propagate for 25 generations (F25) without selection for mating time or callus colour, finding that the advanced hybrid population had moved towards B. tryoni phenotypes for both traits. Selection for day mating in replicate lines at F25 resulted in significant phenotypic shifts in both traits towards B. neohumeralis phenotypes in F26. However, we were unable to completely recover the mating time profile of B. neohumeralis and relaxation of selection for day mating led to a shift back towards dusk mating, but not yellow callus colour, by F35. Conclusion: We conclude that the inheritance of the two major species-defining traits is separable but tightly linked and involves more than one gene in each case. It also appears that laboratory conditions select for the B. tryoni phenotypes for mating time. We discuss our findings in relation to speciation theory and the likely effects of domestication during the generation of mass release strains for sterile insect control programmes

    Kinetic and Sequence-Structure-Function Analysis of Known LinA Variants with Different Hexachlorocyclohexane Isomers

    Get PDF
    BACKGROUND: Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, α, γ and δ, of a priority persistent pollutant, hexachlorocyclohexane (HCH). Sequence-structure-function differences contributing to the differences in their stereospecificity for α-, γ-, and δ-HCH and enantiospecificity for (+)- and (-)-α -HCH are also discussed. METHODOLOGY/PRINCIPAL FINDINGS: Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2(B90A) A110T, A111C, A110T/A111C and LinA1(B90A) were constructed using the FoldX computer algorithm. Turnover rates (min(-1)) showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. α-HCH was found to be the most preferred substrate by all LinA's, followed by the γ and then δ isomer. CONCLUSIONS/SIGNIFICANCE: The kinetic observations suggest that LinA-γ1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins

    Heterologous Expression and Biochemical Characterisation of Fourteen Esterases from Helicoverpa armigera

    No full text
    Esterases have recurrently been implicated in insecticide resistance in Helicoverpa armigera but little is known about the underlying molecular mechanisms. We used a baculovirus system to express 14 of 30 full-length esterase genes so far identified from midgut cDNA libraries of this species. All 14 produced esterase isozymes after native PAGE and the isozymes for seven of them migrated to two regions of the gel previously associated with both organophosphate and pyrethroid resistance in various strains. Thirteen of the enzymes obtained in sufficient yield for further analysis all showed tight binding to organophosphates and low but measurable organophosphate hydrolase activity. However there was no clear difference in activity between the isozymes from regions associated with resistance and those from elsewhere in the zymogram, or between eight of the isozymes from a phylogenetic clade previously associated with resistance in proteomic and quantitative rtPCR experiments and five others not so associated. By contrast, the enzymes differed markedly in their activities against nine pyrethroid isomers and the enzymes with highest activity for the most insecticidal isomers were from regions of the gel and, in some cases, the phylogeny that had previously been associated with pyrethroid resistance. Phospholipase treatment confirmed predictions from sequence analysis that three of the isozymes were GPI anchored. This unusual feature among carboxylesterases has previously been suggested to underpin an association that some authors have noted between esterases and resistance to the Cry1Ac toxin from Bacillus thuringiensis. However these three isozymes did not migrate to the zymogram region previously associated with Cry1Ac resistance.This study was supported by an Australian Postgraduate Award and Top-up Scholarship from the Cotton Catchment Cummunities CRC to Claire Farnsworth and the China Scholarship Council to Yongqiang Li. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest

    Get PDF
    Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H.armigera display continuous variation in flight performance with individuals capable of flying up to 40km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa

    Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster

    Get PDF
    AbstractThe metabolism of volatile signal molecules by odorant degrading enzymes (ODEs) is crucial to the ongoing sensitivity and specificity of chemoreception in various insects, and a few specific esterases, cytochrome P450s, glutathione S-transferases (GSTs) and UDP-glycosyltransferases (UGTs) have previously been implicated in this process. Significant progress has been made in characterizing ODEs in Lepidoptera but very little is known about them in Diptera, including in Drosophila melanogaster, a major insect model. We have therefore carried out a transcriptomic analysis of the antennae of D. melanogaster in order to identify candidate ODEs. Virgin male and female and mated female antennal transcriptomes were determined by RNAseq. As with the Lepidoptera, we found that many esterases, cytochrome P450 enzymes, GSTs and UGTs are expressed in D. melanogaster antennae. As olfactory genes generally show selective expression in the antennae, a comparison to previously published transcriptomes for other tissues has been performed, showing preferential expression in the antennae for one esterase, JHEdup, one cytochrome P450, CYP308a1, and one GST, GSTE4. These largely uncharacterized enzymes are now prime candidates for ODE functions. JHEdup was expressed heterologously and found to have high catalytic activity against a chemically diverse group of known ester odorants for this species. This is a finding consistent with an ODE although it might suggest a general role in clearing several odorants rather than a specific role in clearing a particular odorant. Our findings do not preclude the possibility of odorant degrading functions for other antennally expressed esterases, P450s, GSTs and UGTs but, if so, they suggest that these enzymes also have additional functions in other tissues

    Evolutionary expansion of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron

    Get PDF
    The amidohydrolase superfamily has remarkable functional diversity, with considerable structural and functional annotation of known sequences. In microbes, the recent evolution of several members of this family to catalyze the breakdown of environmental xenobiotics is not well understood. An evolutionary transition from binuclear to mononuclear metal ion coordination at the active sites of these enzymes could produce large functional changes such as those observed in nature, but there are few clear examples available to support this hypothesis. To investigate the role of binuclear-mononuclear active-site transitions in the evolution of new function in this superfamily, we have characterized two recently evolved enzymes that catalyze the hydrolysis of the synthetic herbicides molinate (MolA) and phenylurea (PuhB). In this work, the crystal structures, mutagenesis, metal ion analysis, and enzyme kinetics of both MolA and PuhB establish that these enzymes utilize a mononuclear active site. However, bioinformatics and structural comparisons reveal that the closest putative ancestor of these enzymes had a binuclear active site, indicating that a binuclear-mononuclear transition has occurred. These proteins may represent examples of evolution modifying the characteristics of existing catalysts to satisfy new requirements, specifically, metal ion rearrangement leading to large leaps in activity that would not otherwise be possible

    Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems

    Get PDF
    Anthropogenic impacts increasingly drive ecological and evolutionary processes at many spatio-temporal scales, demanding greater capacity to predict and manage their consequences. This is particularly true for agro-ecosystems, which not only comprise a significant proportion of land use, but which also involve conflicting imperatives to expand or intensify production while simultaneously reducing environmental impacts. These imperatives reinforce the likelihood of further major changes in agriculture over the next 30–40 years. Key transformations include genetic technologies as well as changes in land use. The use of evolutionary principles is not new in agriculture (e.g. crop breeding, domestication of animals, management of selection for pest resistance), but given land-use trends and other transformative processes in production landscapes, ecological and evolutionary research in agro-ecosystems must consider such issues in a broader systems context. Here, we focus on biotic interactions involving pests and pathogens as exemplars of situations where integration of agronomic, ecological and evolutionary perspectives has practical value. Although their presence in agro-ecosystems may be new, many traits involved in these associations evolved in natural settings. We advocate the use of predictive frameworks based on evolutionary models as pre-emptive management tools and identify some specific research opportunities to facilitate this. We conclude with a brief discussion of multidisciplinary approaches in applied evolutionary problems
    corecore